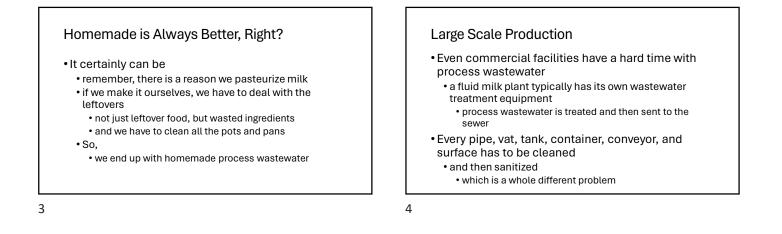
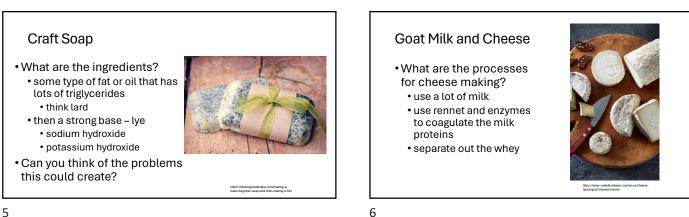
Granite State Onsite Wastewater Association 35th Annual Conference and Exposition

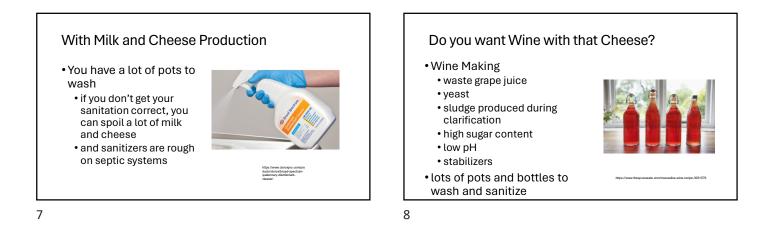
Goat Cheese, Craft Wine, and Homemade **Process Wastewater**

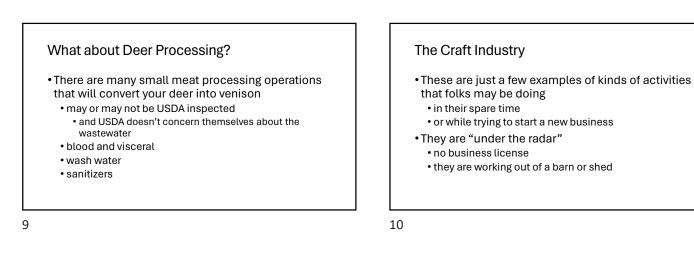
John R. Buchanan, Ph.D., P. E.

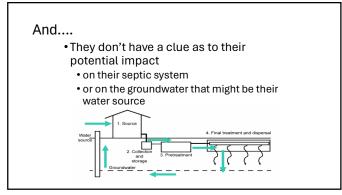
Professor and Extension Specialist Department of Biosystems Engineering & Soil Science




1


Goat Cheese, Craft Wine, and Homemade **Process Wastewater**


Issue


- Craft and homemade goods have always been popular, but there seems to be a resurgence in production
- YouTube is full of "how to do" videos, and folks think they can make some extra money

So,

- When their septic system fails • the owners need to understand that they need a system that can handle their process wastewater
- If the system is built for residential strength and volume
 - it can not handle the extra loading

We are Working with High Strength Wastewater

Focus

- Onsite wastewater treatment systems that service
 - rural gift shops
 - residential kitchens that should be commercial
 - small wineries and craft food production
- We have to understand
 - the flows into the system
 - what is in the water

13

15

Milk Products and Oxygen Demand

Product	BOD ₅ (mg/L)	COD (mg/L)
Whole Milk	114,000	183,000
Skim Milk	90,000	147,000
Buttermilk	61,000	134,000
Cream	400,000	750,000
Whey	42,000	65,000
Domestic Sewage	300	500
Source: Treatment of Dairy Hung, 2006, Taylor & Franci	Processing Wastewaters, B s Group	ritz, van Schallkwyk, and

14

System Design

- We typically base the onsite system design on daily water volume hydraulic flow
 - size of septic tank
 - size the soil treatment area
 - in combination with soil evaluation
- However, this assumes residential strength

Primary Issue

• With high-strength wastewater • we have to protect the soil treatment area

• How

- need to remove the high strength constituent before it damages the soil treatment area
- need to increase the size of the soil treatment area in relation to the high-strength constituent
- equalize the flow to reduce peak discharges

16

120 mg/L and 10 mg/L

Over 600 mg/L

Measuring Oxygen Demand

- Biochemical Oxygen Demand BOD₅
 - dissolved oxygen consumed by microbes during 5-day test
- Chemical Oxygen Demand COD
 - oxygen needed to break down organic matter using strong oxidizing agents
 - approximation of BOD
 - quicker test than BOD
 - measure of biological inhibitors

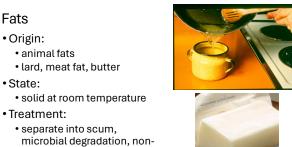
19

I mentioned "Sanitizers"

- This is why you need both BOD₅ and COD tests • BOD₅ is based on a microbial response, organic matter is bio-oxidized over a 5-day period
 - if sanitizers prevent microbes from doing their job, • the BOD₅ test is faulty
 - sanitizers can also kill your wastewater treatment system

20

TSS impacts on treatment


- High levels lead to clogging
- Reduce efficiency of treatment system
- Block or plug distribution pipes

toxic, sticks to components

in the tank

- Seal off and plug voids in soil and filters
- Neutral buoyancy solids do not settle
 - stay in suspension in the tank "clear zone"
 - may carry over to next treatment step

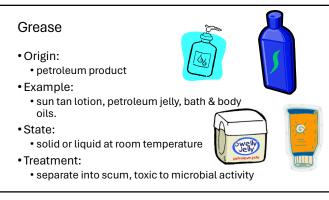
22

Fats, Oils, and Greases (FOG)

Range: 10 - 50 mg/L Typical value: 15 mg/L

Assumes residential strength wastewater

Oils


- Origin:
- vegetable or plant
- State:
 - liquid or solid at room temperature
- Treatment:
 - separate into scum, microbial degradation, non-toxic, stays in liquid area in tank

25

FOG

26

System Impacts

- Fats, oil, and grease
 - Add to septic tank scum layer • Clog pipes, treatment systems, soil treatment areas
 - Coats media
 - Collect and harden on surface, entraps organic matter and other materials
 - Cause foul odors and attract insect pests
 - · Creates a high oxygen demand

27

pН

Range: 6.5 - 8.0 Typical value: 7.0 Biological life: 4.5-9

28

What will effect pH?

- · Low pH: acids (sour odor indicator)
 - Milk products, sugars, flour, canning
 - Acid cleaners
- High pH: basic (chemical odor indicator)
 - Ammonia
 - Cleaners
- · Both low and high readings cause lethargic microorganisms

Temperature (°F)

Range: 37 – 81° F Typical value: 60° F Optimal for biological activity: 77-95° F

What Influences Temperature?

- Source water temperature • (well vs. surface vs. utility)
- Wastewater exiting facility
- Holding/detention time
- Air temperature
- Soil temperature
- Commercial hot water

31

Working with High Strength Wastewater

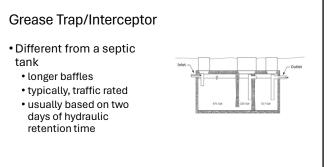
Protecting the Soil Treatment Area

32

Design Considerations

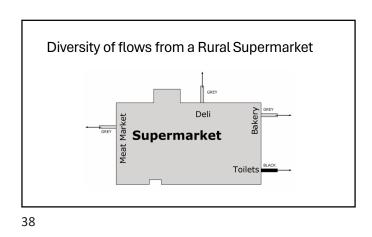
- Pre-Treatment
- reduce the high-strength constituent
- Sizing the soil treatment area for the load
 - spreading the constituent out over a greater area
- Flow equalization
 - optimize the treatment system
 - protect the infiltration area

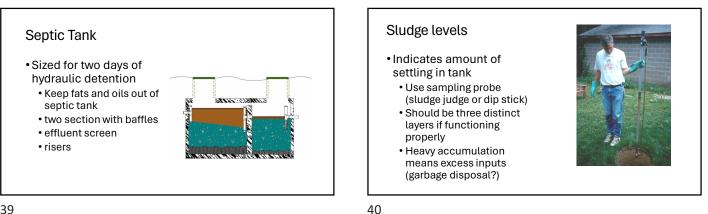
33

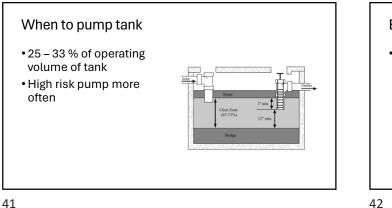

Pre-Treatment

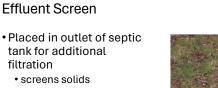
- Liquid/solid separation
 - grease trap/interceptor
 - septic tank
 - effluent screen
- Oxygen demand removal
 - advanced treatment with aerobic systems
- Chemical amendments
 - acid/base

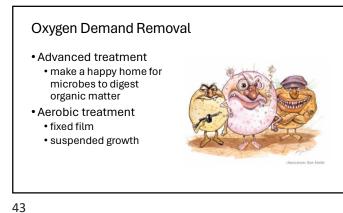
34


Fats and Oils Watch the temperature flow from commercial dishwashers can raise temperature in liquid/solid separation tanks prevents oils from rising to scum layer Watch detergents


- emulsifiers maintain fats & oils in suspension
- Use garbage cans for food scraps • before the pre-wash


Separate the Flows


- Commercial kitchen or butcher shop wastewater
 - grease trap/interceptor
 - then septic tank
- Commercial laundry wastewater
 - lint screen
 - then septic tank
- Restrooms
 - straight to septic tank



- requires periodic cleaning
- need for frequent cleaning is an indicates organic overloading

Fixed Film Process

- Microbes are attached to the media
 Microbes have a home and tend to store food
- Greater mixing to bring food/oxygen to microbes
- FOG control is very important
 - fats, oils, & grease will coat the media
 - difficult to digest

44

Media Filters

- Effluent percolates through the media to an underdrain system where it is collected for further treatment.
- Media is never saturated; the presence of air promotes establishment of favorable microorganisms.

45

<section-header><section-header><list-item><list-item><list-item>

46

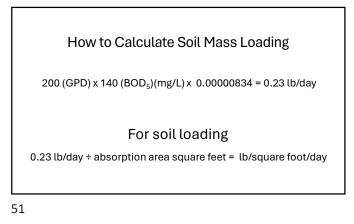
Remember the Goal

- To protect the soil treatment area from being clogged by excessive organic matter
 - size advanced treatment system for the organic loading
- Undersized:
- organic matter will move through undigested
- Oversized:
 - insufficient bacteria population available for treatment

Sizing the Soil Treatment Area to Handle the Organic Load

How Much Organic Matter can the Soil Handle?

- Depends on the soil
- We evaluate the soil for hydraulic loading with the assumption of residential strength


 what if we don't have residential strength?

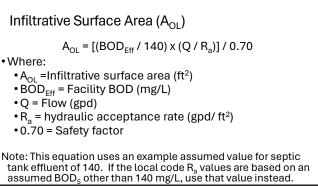
Again

49

Mass loading • Calculate mass loading to a system • Concentration of constituent in the wastewater • Mass (lb) = C (mg/L) × Q (gpd) × 8.34 1,000,000 • Mass (lb) = C (mg/L) × Q (gpd) × 0.00000834

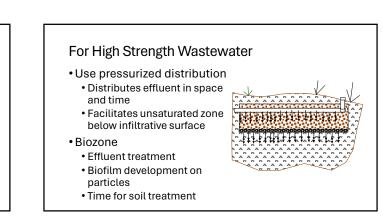
50

Example Soil Loading Chart

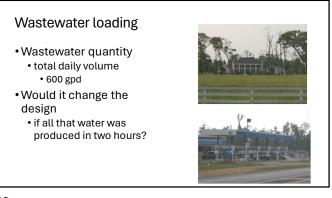

Soil classification	Hydraulic loading (gal/ft²-d) R _a	Organic loading rate lb/ft²-d R _{OL}
Sandy	0.38	0.00044
Sandy Loams	0.25	0.00029
Loamy Silt	0.20	0.00023
Clayey	0.10	0.00012

• Organic loading rate based on the assumption of $BOD_5 = 140$ mg/L before entering soil treatment area

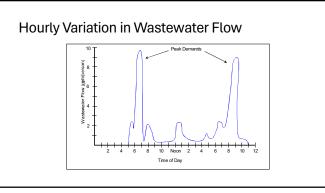
52


Example • Daily volume is 600 gpd • Soil rated for 0.25 gpd/ft2 • hydraulic loading rate • Effluent BOD₅ is 200 mg/L • higher than 140 mg/L • How much bigger does the soil treatment

• How much bigger does the soil treatment area need to be?



Calculation


 $A_{OL} = [(BOD_{Eff} / 140) \times (Q / R_a)] / 0.70$ $A_{OL} = [(200 / 140) \times (600 / 0.25)] / 0.70$ $A_{OL} = 4,900 \text{ ft}^2$ If wastewater had been residential strength $A_{OL} = (600 / 0.25) / 0.70 = 3,430 \text{ ft}^2$

Inflow Rate

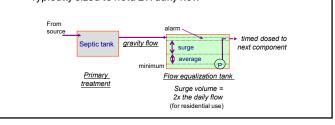
- Inflow rate can change the effectiveness of
 - grease traps/interceptors
 - septic tanks
 - aerobic treatment units
- Basically
 - flow in equals flow out
 - disrupt settling
 - water moves through components too quickly

61

Peak flows

- Estimating peaks
 - Home 16 hours
 - Commercial hours of operation
 24 hour
 - 24 nour
 - Dinner only (4-5 hours)
 - Runoff period
 - Open hours + prep & cleanup
 - May need to check more closely on hourly basis

62


Managing Hydraulic Loads

- Need to determine the length, timing and volume of peak flow.
 - Residential typically diurnal pattern
 - Restaurants typically about 2 hours after lunch and dinner.
 - Clean up time
 - But you need to consider that the water use habits may not be "typical"

63

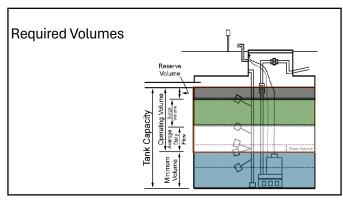
Equalization Tank • Presence indicates time dosing

• Typically sized to hold 2 X daily flow

64

Do not Totally Rely on Published Design Criteria

- Getting real values for
 - daily wastewater volume
 - peak wastewater flow rates
 - organic loading
 - temperatures
- Is critical for successful design and installation
 - find similar facility


Data Required

- Flow characteristics:
- Average daily flow
- Peak flow
 - Regular highs
 - Weekly
 - Monthly
- Special occasions
- How often: annually/ bi-annual, monthly?
 - can we get porta-potties for special occasions?

Flow Equalization Systems

- Makes the flow introduced to the treatment system more consistent.
- Flow equalization is important if:
 - Water use habits or facility operations are variable-• Example: church only open on Sun.
 - Frequent peaks exceed system capacity
 - Wash day: cleaning service

67

68

Calculating Tank Storage for Equalization (cont)

- Necessary storage
 - Surge volume
 - Storage volume [surge volume + avg.]
- Operating volume
 - Storage volume + reserve volume
- Tank capacity
 - Sum all necessary volumes [min.+ operating]

70

Summary

- Most all of the regulations are based on what we have learned about residential strength wastewater
 - however, if some component of the wastewater is
 - greater than residential strength
 - then it must be treated as high strength
- We have to protect the infiltrative surface within the soil treatment area
 - or wastewater will rise to the ground and the system will fail

Summary

- Three ways to work with high strength wastewater • remove the high-strength component before it reaches the soil treatment area
 - increase the size of the soil treatment area in proportion to the high-strength component
 - equalize the flow to the treatment system and to the soil treatment area

