NHDES Residuals Management Section PFAS Investigation Update

Anthony F. Drouin

Supervisor - Residuals Management Section

2022 GSOWA 33rd Annual Spring Septic System Conference & Expo: Breakout Session I

Residuals Management Section oversight

NH Residuals Waste Cycle – Sludge, Leachate, Septage

PFAS Biosolids Sampling

PFAS Collection System Sampling

USGS PFAS Sludge and Soil Leaching Study

Northeast Biosolids Improvement Program

Residuals Management Section

NHDES

- Water Division
 - Wastewater Engineering Bureau

Residuals Management Section

Anthony Drouin	Judith Sears-Houston	Wade Pelham	Jim Talvy	
Supervisor Sludge Quality Certification Permitting	Permitting & EnforcementEnforcementEngineerSite and FacilityPermitting	Sludge & Septage Coordinator Training and Outreach	Inspector Sludge & Septage Hauler Permitting	

Applicable State Rules for Residuals Management Options

- Land Application Env-Wq 800/Env-Wq 1600/RSA 485-A
- Solid Waste Env-Sw 100 through 2100, RSA 149-M
- Incineration Env-A 600, 40 CFR Part 60, Subpart O
- Federal Regulations 40 CFR Part 503

What Residuals do we regulate in NH?

Sludge REGULATION

- DRINKING WATER TREATMENT
- ► SHORT PAPER FIBER
- ► WASTEWATER TREATMENT
 - ► SLUDGE
 - ► BIOSOLIDS

Septage REGULATION

- SEPTIC TANK
- GREASE INTERCEPTOR / GREASE (BROWN vs YELLOW)
- PORTABLE TOILETS
- MARINE SANITATION DEVICE

Sludge & Septage Management:

Hauling

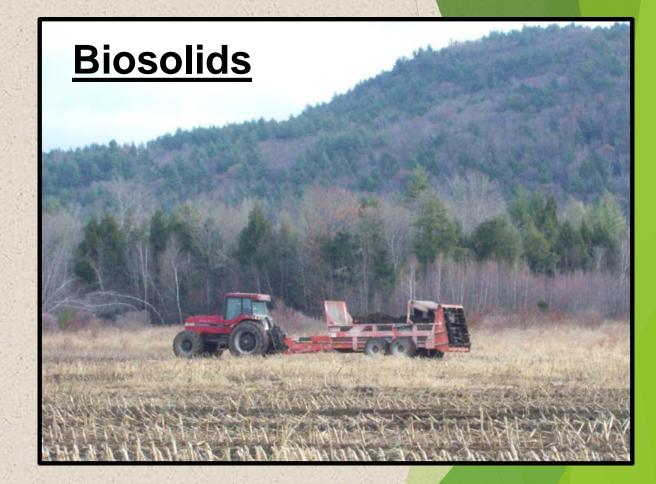
Ę

- Residuals Quality
- Sites/Land
 Application
- Facilities
- Recordkeeping
- Reporting to NHDES

VS.

- Sludge
- NOT treated

Ę


- NOT AS MUCH Testing
- Disposed at a landfill or burned in an incinerator
- NO CERTIFICATION
- Can be transformed into Biosolids

Biosolids

- Treated
- Tested for 170+Analytes
- Beneficial Use
- ► NHDES CERTIFIED
- ► UNH BMP
- NEIWPCC SAP

Sludge Quality Certification

- Basic information
- Industrial pretreatment information
- Quantity
- Pathogen & vector attraction reduction options
 - Class A & Class B biosolids
 - Process to <u>Significantly Reduce Pathogens</u>: Class B
 - Process to Further Reduce Pathogens: Class A
 - Short Paper Fiber
 - Drinking Water Residuals
- Historical & current quality data

Sludge Quality Certification

- Annual Testing (frequency of testing based on volume generated)
- Recordkeeping
- Annual Report to NHDES by last business day in January, each year
- Renew certificate every 5
 years

Sludge Quality Certification

Beneficial Use is the utilization of the nutrients and organic matter from the biosolids for the agronomic need as long as it <u>does not pose a significant threat to human health or environment</u>. Beneficial use applies to agricultural, forest, and land reclamation management practices

- Bulk biosolids must obtain an SQC to be distributed in NH
- Annual soil test determine crops nutrient demand supplied from biosolids (UNH BMP)
- Class B land application must obtain a site permit through RMS
- Concentration limits and screening standards set for VOC, SVOC, PCB's, Dioxin, & Metals 168 analytes

2018 NH Sludge, Septage, and Leachate

- NH Biosolids Recycled to Land Application : 39,902 wet tons
- NH Sludge that was dispoed at a landfill : 50,176 wet tons
- NH Sludge that was incinerated : 17,450 wet tons

*Sludge managed to lagoon not accounted for **NH WWTF, no paper mill sludge accounted for

- Over 100,000,000 gallons of septage was managed in NH
- 6 Operating lined landfills in NH : 99,331,519 gallons of leachate 79,036,610 gallons managed at WWTFs within state 19,115,003 gallons managed at WWTFs out of state

NH Sludge Disposal Practices: 2018: 104,500 Wet Tons

> Incineration 17%

Biosolids

35%

Landfill 48%

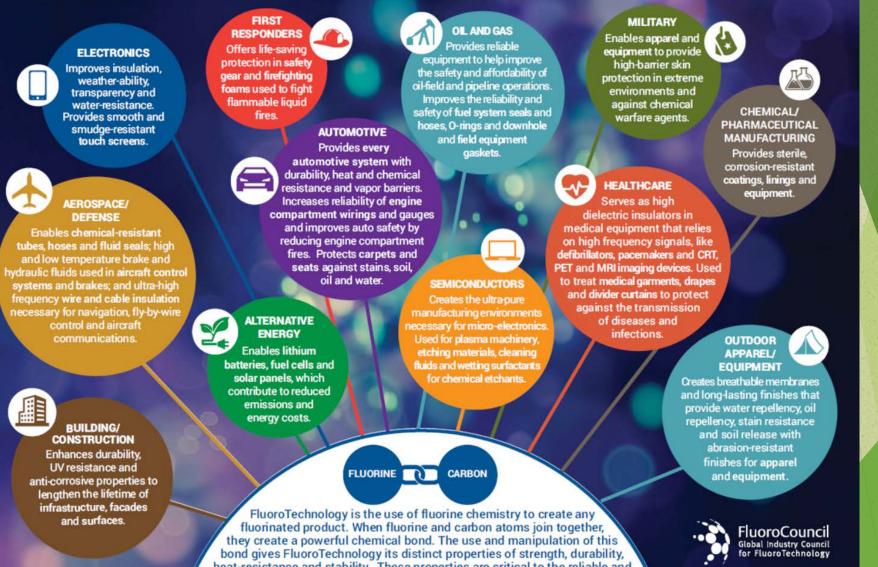
Municipal Responsibility RSA 485-A:5-b

Each municipality shall either provide, or assure access to, a DES-approved septage facility or a DES-approved alternative option for its residents.

"provide, or assure access to"

shall mean a written agreement, indicating that the recipient facility agrees to accept septage generated in that municipality

2019 Septage Generation by town


Londonderry 5,855,012 gal

- Bedford 3,435,354 gal
- Salem 2,970,950 gal
- Amherst 2,720,380 gal
- Windham 2,135,485 gal

- North Hampton 2,039,764 gal
- Derry 2,037,164 gal
- Litchfield 1,979,975 gal
- Plaistow 1,778,245 gal

FLUOROTECHNOLOGY MAKES IMPORTANT PRODUCTS FOR VITAL INDUSTRIES POSSIBLE

FluoroCouncil member companies voluntarily committed to a global phase-out of long-chain fluorochemistries by the end of 2015, resulting in the transition to alternatives, such as short-chain fluorochemistries that offer the same high-performance benefits, but with improved environmental and health profiles.

© ACC FluoroCouncil 2019

heat-resistance and stability. These properties are critical to the reliable and safe function of myriad products that industry and consumer rely on every day.

www.FluoroCouncil.org

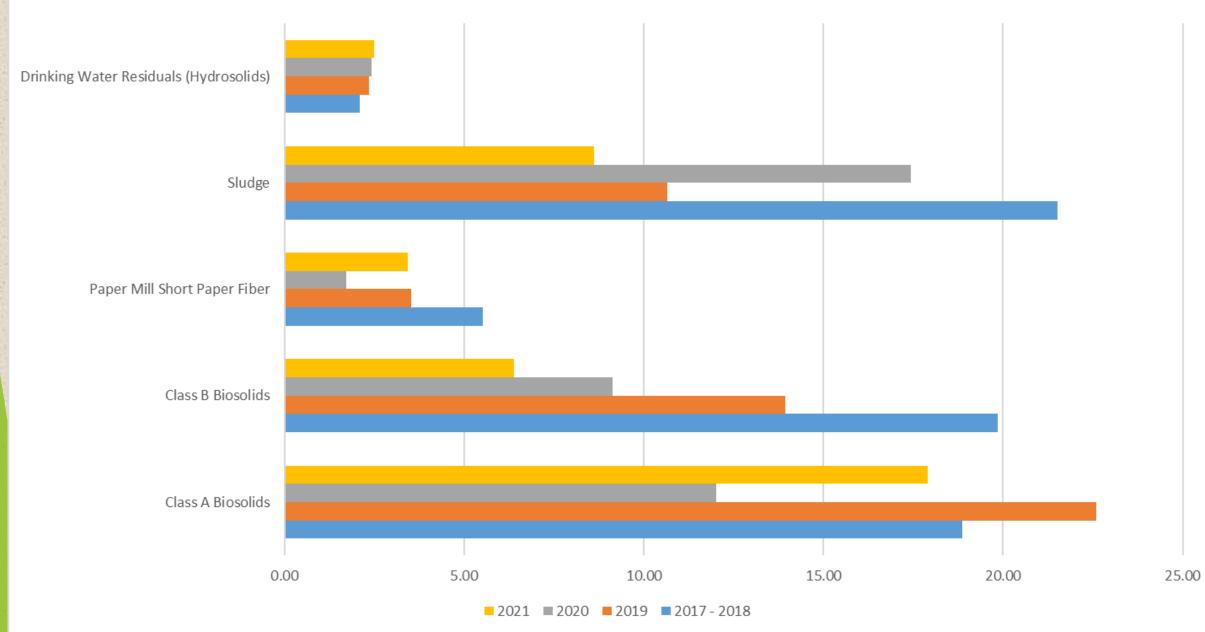
Select PFAS Standards and Guidance Values in the U.S.

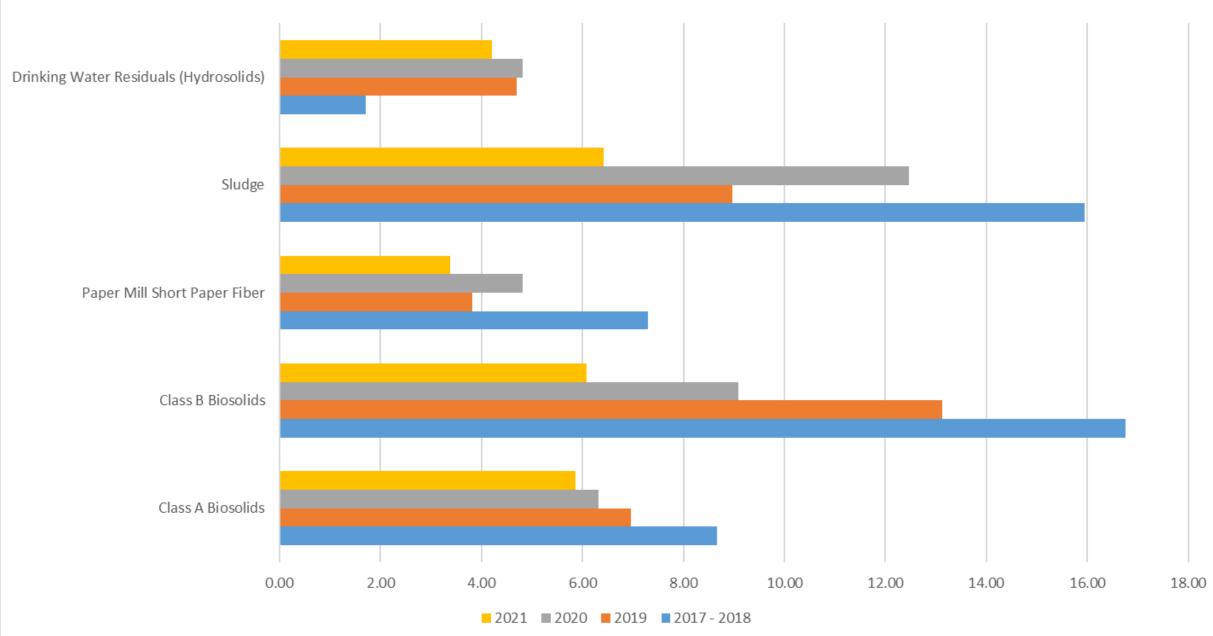
Specific PFAS	NHDES MCLs	NJ DEP MCLs	VT DEP MCL	MI DHHS MCL	MA DEP MCL	NY DOH MCLs	MN DOH Guid.	CA Response Level	CA Notif. Level	CA Notif Recom.	USEPA LHA	CT DPH Advisory
PFOA	12	13	20* combined	8	20* combined	10	35	10	5.1	0.1	70* combined	70* combined
PFOS	15	14	*	16	*	10	15	40	6.5	0.4	*	*
PFHxS	18		*	51	*		47					*
PFNA	11	13	*	6	*							*
PFHpA	\bigcirc		*		*							*
PFDA					*							
GenX				370								
PFBS				420			2000					
PFBA							7000					
PFHxA				400,000								
All units	s are in	part-pe	r-trillion									

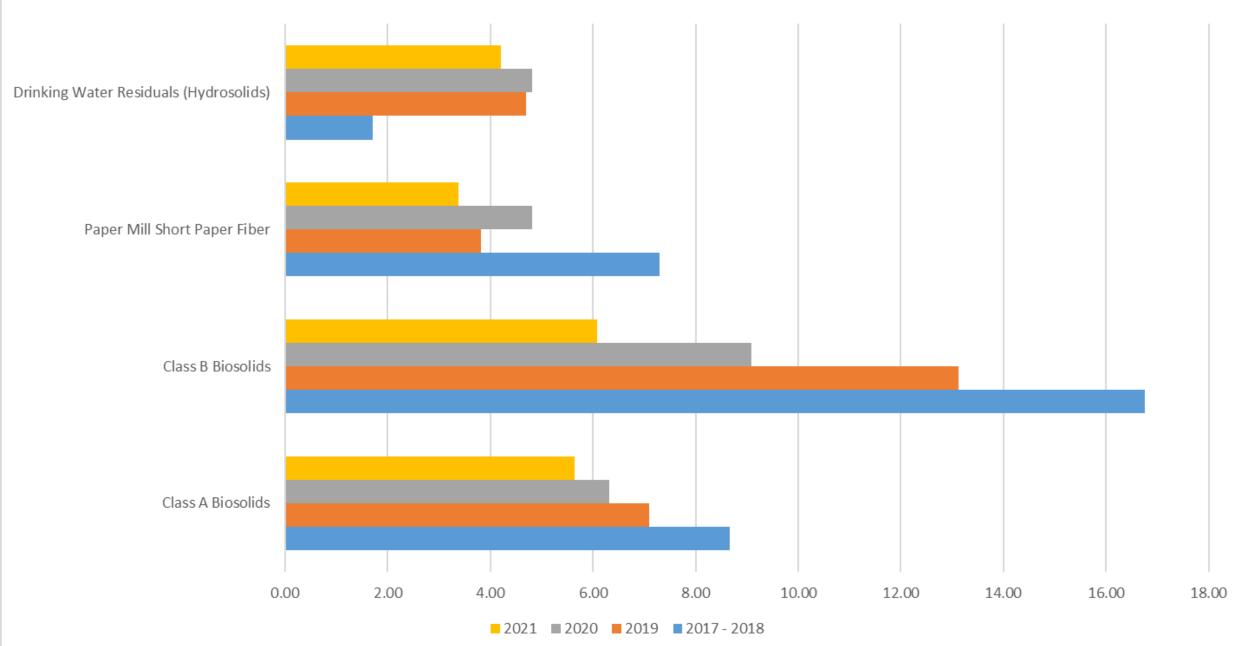
PPE and proper clothing for sludge PFAS sampling

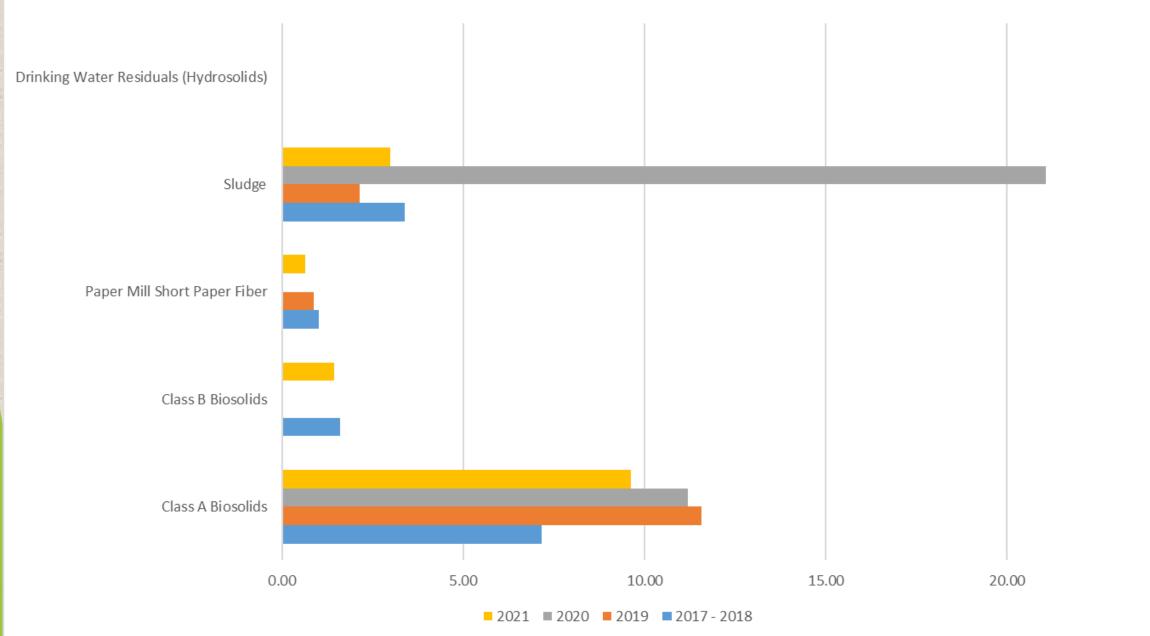
Sample equipment cleaning & sampling

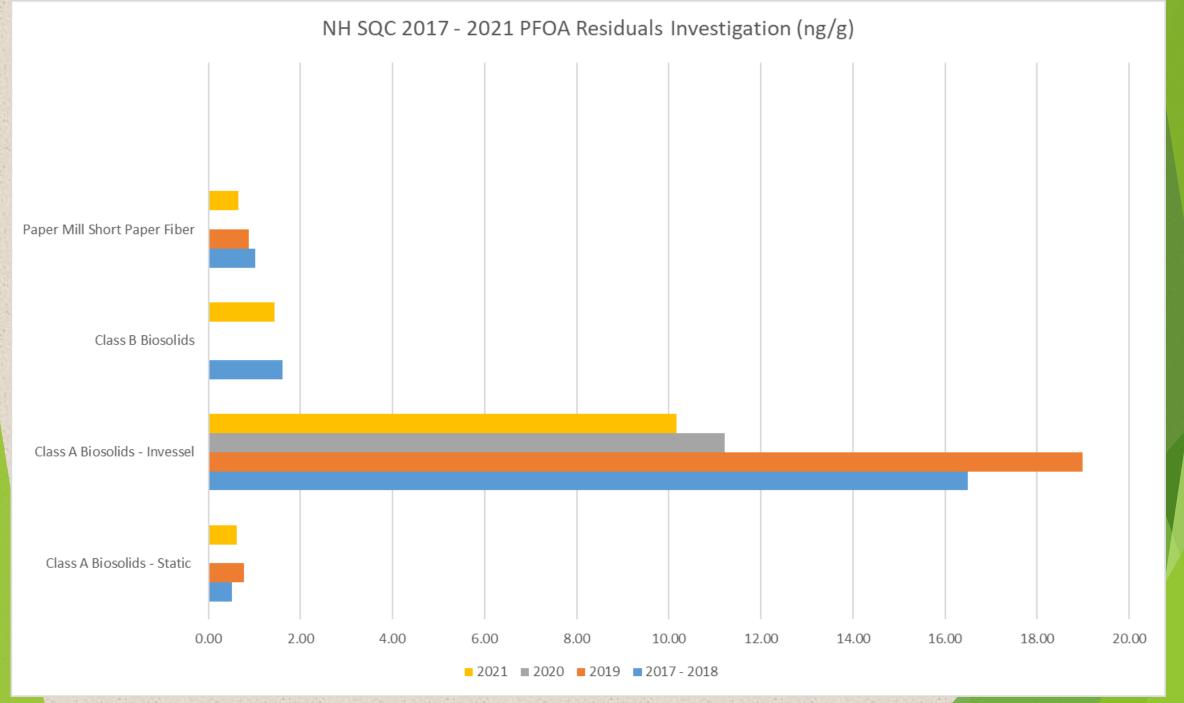
- Rinse equipment with warm tap water to remove most solids.
- Using a brush and PFAS free lab detergent to scrub the equipment to remove all residues
- After scrubbing, rinse the equipment three times with tap water (make sure all detergent is removed).
- The tap water rinse should be followed by rinsing three times with PFAS free deionized water.
- To store, buckets, beakers and other containers can be inverted in a clean, dry location.
- Just prior to sampling, rinse the sample equipment three times in PFAS free deionized water. Take equipment blank rinsate samples to check if your cleaning process is preventing cross contamination.



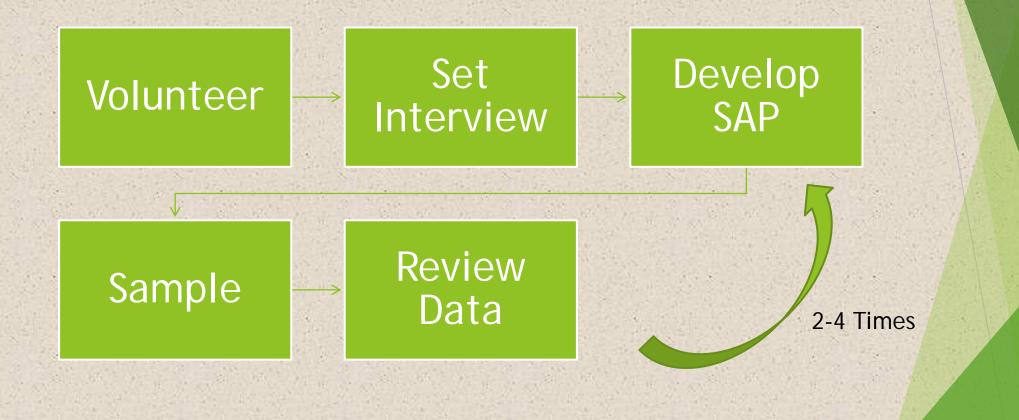



NH SQC 2017 - 2021 PFAS Residuals Investigation (ng/g) (sum of PFOA, PFOS, PFHxS, & PFNA)


NH SQC 2017 - 2021 PFOS Residuals Investigation (ng/g)


NH SQC 2017 - 2021 PFOS Residuals Investigation (ng/g)

NH SQC 2017 - 2021 PFOA Residuals Investigation (ng/g)


25.00

Other Notable PFAS Sampling Events

- Rural NH community Septage Lagoon Solids sampled in 2020
 - Total PFAS (24 compounds) 222.8 ng /g
 - Total of NH DW Regulated Compounds (PFOS, PFOA, PFNA, PFHxS) 86.6 ng /g
- Compostable Toilet Compost sampled in 2021
 - Total PFAS (24 compounds) 13.3 ng /g
 - Total of NH DW Regulated Compounds (PFOS, PFOA, PFNA, PFHxS) 9.6 ng /g
- Elementary School Septic Tank Septage sampled in 2021
 - Total PFAS (24 compounds) 59.6 ng /g (bottom) / 421.4 ng /g (top)
 - Total of NH DW Regulated Compounds (PFOS, PFOA, PFNA, PFHxS)
 - 0.0 ng /g (bottom) 3.8 ng /g (top)
 - Aerated Lagoon Sludge Blanket sampled in 2020
 - Total PFAS (24 compounds) 388.3 ng /g (lagoon 1) / 533.5 ng /g (lagoon 2)
 - Total of NH DW Regulated Compounds (PFOS, PFOA, PFNA, PFHxS)
 - 0.0 ng (lagoon 1) /g / 31.6 ng /g (lagoon 2)
 - ▶ Higher concentrations in precursors analyzed than terminal compounds
 - Equipment blanks were ND

NHDES RMS Collection Systems Sampling Effort

Industrially PFAS Impacted Community

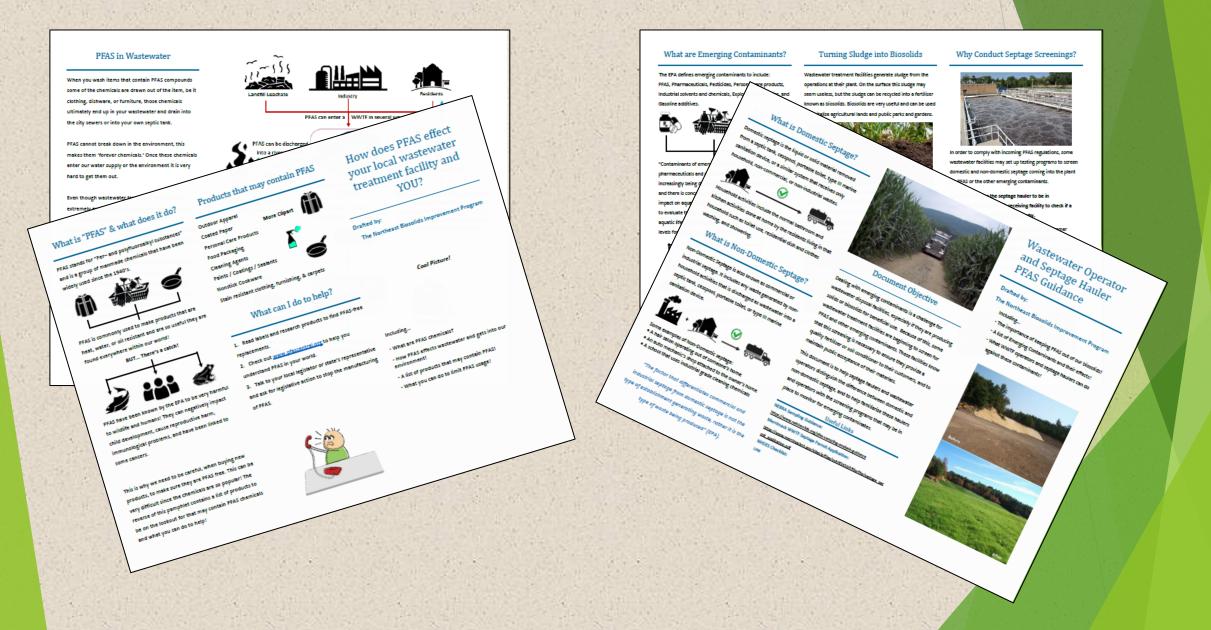
日本であると	Sample Name	Units	Total PFAS	Total of NH DW Regulated PFAS Compounds (PFOA, PFOS, PFNA, PFHXS)	
	1	ng/l	360.00	0.00	
3	1-DUP	ng/l	0.00	0.00	
-	Residential	ng/l	39.21	26.52	
	2-DUP	ng/l	36.91	24.56	
1	Residential	ng/l	95.07	40.70	
2	3-DUP	ng/l	97.64	41.30	
	4	ng/l	82.45	36.22	
3	4-DUP	ng/l	83.40	37.60	
-1	Field Blank	ng/l	0.00	0.00	
No.	5-initial Industrial	ng/	2175.90	863.10	
ALC: N	5-5 min later	ng/l	1463.27	383.80	-
	6 Industrial Storm	ng/l	55.15	29.13	
	7 Water	→ng/I 🧲	5531.43	3840.70	
2	8	ng/l	452.88	347.38	
÷.	9	ng/l	0.00	0.00	
10	10	ng/l	0.00	0.00	
3	11	ng/l	14.10	14.10	
	12	ng/l	288.50	0.00	
	Influent Composite (Composite Sampler)	ng/l	104.40	0.00	
+	Effluent Composite (Composite Sampler)	ng/l	190.29	21.68	
THE N	Field Blank	ng/l	0.00	0.00	

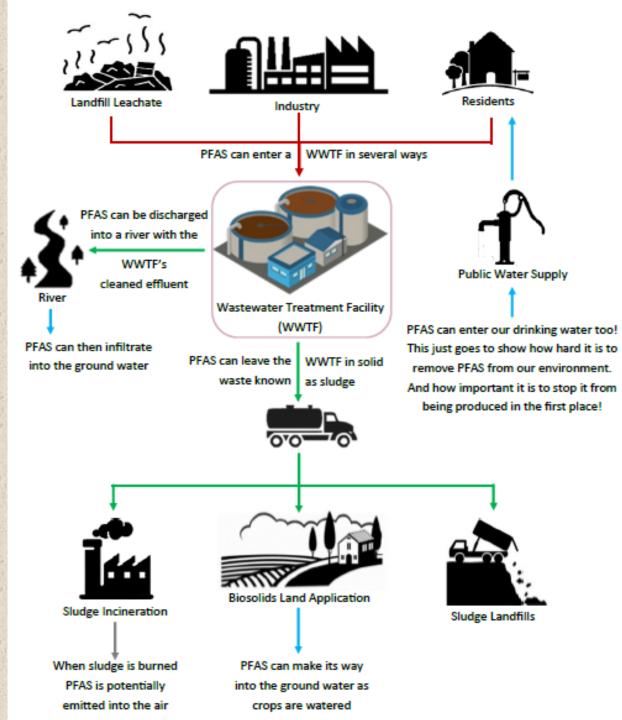
Industrially PFAS Impacted Community

Sample Name		Total	Total of NH I	DW Regulated PFAS
		PFAS	Compounds (PFC	OA, PFOS, PFNA, PFHXS)
1		360.00		0.00
1-DUP	ng/l	0.00		0.00
	ng/l	39.21		26.52
2	ng/l			
2-DUP	ng/l	36.91		24.56
3	ng/l	95.07		40.70
3-DUP	ng/l	97.64		41.30
4	ng/l	82	der Residentia	I Neighborhood 7 60
4-DUP	ng/l	0.		I Neighborhood 7.60
Field Blank	ng/l	0.00		0.00
5-initial	ng/l	2175.90		863.10
5-5 min later	ng/l	1463.27		383.80
6	ng/l	55.15		29.13
7	ng/l	5531.43		3840.70
8	ng/l	452.88		347.38
9	ng/l	0.00		0.00
10	ng/l	0.00		0.00
11	ng/l	14.10		14.10
12	ng/l	288.50		0.00
Influent Composite (Composite Sampler)	ng/l	104.40		0.00
Effluent Composite (Composite Sampler)	ng/l	190.29		21.68
Field Blank		0.00		0.00

Industrially PFAS Impacted Community

Sample Name	Units	Total	Total of NH DW Regulated PFAS
		PFAS	Compounds (PFOA, PFOS, PFNA, PFHXS)
1	n a /l	200.00	0.00
1	ng/l	360.00	
1-DUP	ng/l	0.00	0.00
2	ng/l	39.21	26.52
2-DUP	ng/l	36.91	24.56
3	ng/l	95.07	40.70
3-DUP	ng/l	97.64	41.30
4	ng/l	82.45	36.22
4-DUP	ng/l	83.40	37.60
Field Blank	ng/l	0.00	0.00
5-initial	ng/l	2175.90	863.10
5-5 min later	ng/l	1463.27	383.80
6	ng/l	55.15	29.13
7	ng/l	5531.43	3840.70
8	ng/l	452.88	347.38
9	ng/l	0.00	0.00
10	ng/l	0.00	0.00
11	ng/l	14.10	14.10
12	ng/l	288,50	0.00
Influent Composite (Composite Sampler)	ng/l	104.40	0.00
Effluent Composite (Composite Sampler)	ng/i	190.29	21.68
Field Blank	ng/l	0.00	0.00


Non-Industrially PFAS Impacted Community


Sample Name	Units	Total PFAS	Total of NH DW Regulated PFAS Compounds (PFOA, PFOS, PFNA, PFHXS)
1	ng/l	0	0
2	ng/l	0	0
2-DUP	ng/l	0	0
3	ng/l	0	0
4	ng/l	10.5	0
5	ng/l	0	0
5_DUP	ng/l	0	0
6	ng/l	75.4	0
7	ng/l	0	0
8	ng/l	0	0
9	ng/l	0	0
10	ng/l	33.2	0
10_DUP	ng/l	37.1	0
Influent Composite (Composite Sampler)	ng/l	0	0
Effluent Composite (Composite Sampler)	ng/l	163.69	28.66
Field Blank	ng/l	0	0
11	ng/l	0	0
12	ng/l	44.3	0
13	ng/l	0	0
4-DUP	nh/l	0	0

USGS Soil / Sludge Leaching Study

- Three phase study
 - NH soil background sampling (100 samples)
 - PFAS Batch Experiments on biosolid and NH soils
 - Field Investigation to prove accurate coefficients were developed
 - Phase 1 : Complete Data Release soon. PFOS detected 100%
- Phase 2: In Procesd
- Phase 3: Fall 2021 Spring 2022
- Full Completion: October 2022
- Rule revisions: Soil Standard proposed by Nov. 2023 per HB1547 – Newly proposed legislation

NEBIP Brochures

Thank you! Any Questions?

Anthony F. Drouin Residuals Management Section Supervisor Water Division - Wastewater Engineering Bureau, NHDES 29 Hazen Drive, PO Box 95, Concord, NH 03302 Tel: (603) 271-3571 | Fax: (603) 271-4128 anthony.f.drouin@des.nh.gov