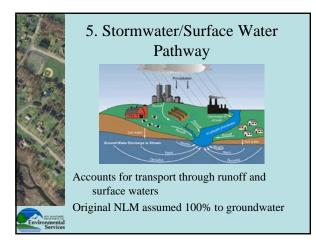
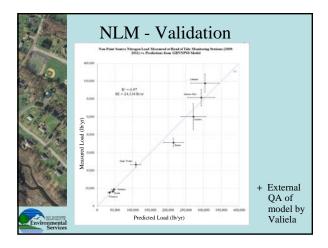
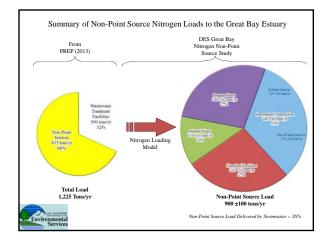
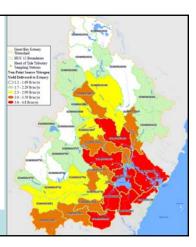

Delivery Factors					
Delivery Fac	ctors for N Source	es to Estuary thr	ough Septic Syste	ems	
		Delivery	Factor		
Septic System Location	Septic Tank and Leach Field	Groundwater Plumes	Groundwater to Embayment	Total	
Outside 200M buffer	60%	66%	65%	26%	
Inside 200M buffer	60%	100% 100%		60%	
	artender for		Nitrogen deli	very vehicle	

10	Results of Analysis					
	Town	Estimated Total Population within the Coastal Watershed ¹	Estimated Population within the Coastal Watershed ¹ Served by WWTFs	Estimated Population within the Coastal Watershed ¹ Served by Septic Systems	Estimated Population within 200-m of the Estuaries ² Served by WWTFs	Estimated Population within 200-m of the Estuaries ² Served by Septic Systems
the start	Total NH	273,078	127,816	145,262	15,525	5,896
- Telenaria	Total ME	47,822	17,902	29,920	4,334	2,045
- Part	Total MA	4,875	2,510	2,365	18	2
1 1 1 1 1	Grand Total	325,775	148,227	177,548	19,877	7,943
Environmental Services	10 11	os of N pe	er person pe	r year		









Summary

Hot spots nearest the estuary
Atmospheric deposition, fertilizer, and human waste contribute equal amounts to non-point source.

•Animal waste is a small contributor.

 Results by town and watershed

Public Comments (May-Aug. 2013)

Recurring Themes

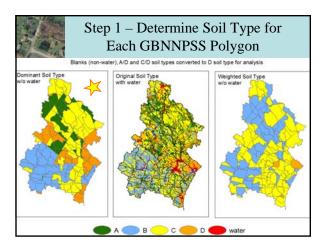
- Overestimated the N from hay fields (87% of crop land) and agriculture in general
- Underestimated the N contribution from stormwater
- Local atmospheric and/or transportation derived N was not included

1. Agriculture

- Consider change from 50% of hay fields were fertilized each year to 10%
- Add cycling of N in milk/meat products and manure to model

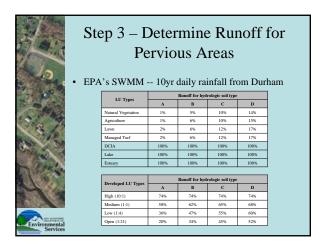
Effect =

Decrease N from agriculture



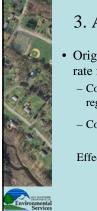
2. Stormwater/Groundwater

Model assumed 12% runoff of N deposited on paved, lawns, turf, and agricultural



- Use Curve Number Approach - Soils based runoff model from NRCS
- Account for "run-on" from pavement onto pervious land uses

Step 2 – Assign	n CN to Eac	h La	nd I	Use	Туре
Table 9–5 Runoff curve numbers for urban areas 2					
Cover description cover type and hydrologic condition	Average percent impervious area 2'	CN I A	or hydrolo B	ogic soil gr C	D D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, e	etc.)≆				
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
Impervious areas;					
Paved parking lots, roofs, driveways, etc.					
(excluding right-of-way)		98	98	98	98
Streets and roads:					
Paved; curbs and storm sewers (excluding right-	of-way)	98	98	98	98
Paved; open ditches (including right-of-way)		83	89	92	93
Gravel (including right-of-way)		76	85	89	91
Dirt (including right-of-way)		72	82	87	89
Environmental Services					

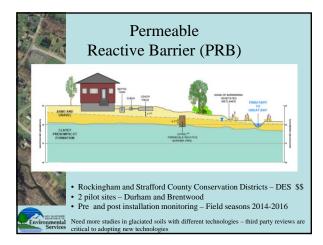


- Natural vegetation pathway added (>0)
- Higher accuracy in runoff from impervious surfaces
- Net increase in N from stormwater

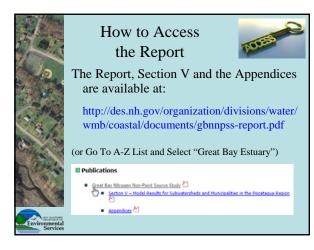
3. Atmospheric Deposition

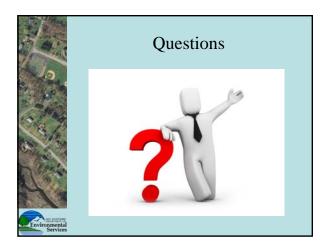
- Originally used the same deposition rate for the entire watershed
- Considering different rates for different regions.
- Considering local hotspots in urban areas

Effect uncertain


How will this report be used?

- Non-regulatory, planning document
- Stimulate thoughts on NPS planning
- Identify priorities for more detailed study




So what about septic systems?

- Need more science technologies and attenuation
- Focus on areas closest to water bodies and estuary (ie. 200 meters)
- Look at community systems economies of scale
- Costs/Funding/Benefits
- Monitoring

